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Decision problems

A decision problem is a yes/no question.

Examples

� Does the following sequence contain the pattern A,A,G ?
{C ,T ,G ,A,T ,A,A,G ,C ,T}

� Is there a subset of these numbers that sums to zero?
{−7,−3,−1, 5, 8}
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NP decision problems

A decision problem is in the class NP1 if instances where
the answer is “yes” have efficiently verifiable proofs of the
fact that the answer is indeed “yes”. Here, “efficient” means
polynomial-time in the length of the instance.

(1) “Nondeterministic Polynomial time”

Examples

� Does the following sequence contain the pattern A,A,G ?
{C ,T ,G ,A,T ,A,A,G ,C ,T}

� Is there a subset of these numbers that sums to zero?
{−7,−3,−1, 5, 8}

The red elements prove that the answer is indeed “yes”.
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NP decision problems

� The easiest problems are P, they can be solved efficiently.

=⇒ {C ,T ,G ,A,T ,A,A,G ,C ,T}.
If the sequence has length n, the subsequence can be found
using n comparisons (efficient).

� The hardest problems are NP-complete. We don’t know
any better way to solve these problems aside from checking
every possibility...

=⇒ {−7,−3,−1, 5, 8}. Need to check all subsets! If the
sequence has length n, there are 2n subsets (exponential).
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P = NP?

� It’s not actually known whether there is such a thing as
“hard” problems in NP! It could be possible that P=NP
(all NP problems are solvable in polynomial time).

� This is perhaps the most famous unsolved problem in
theoretical computer science.

� Most people believe that P6=NP.

18-5



Examples in P

� pattern-matching: Given a string x1x2 . . . xn, does it
contain a substring y1y2 . . . yk? (e.g. linear search)

� sorting a list: Given a set of numbers {x1, . . . , xn} sort it
in ascending order. (e.g. bubble sort, quicksort)

� linear equations: Solve a system of n linear equations in n
variables (e.g. Gaussian elimination)

� linear programming: Solve a linear program with n
variables and n constraints. (e.g. ellipsoid method)
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NP-complete problems

� Traveling salesman (TSP): Given a list of cities and the
distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns
to the origin city?

� Boolean satisfiability (SAT): Given an expression using
n boolean variables and the operators AND, OR, NOT, and
parentheses, is there a choice of the variables that makes
the expression true? Example:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1
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NP-complete problems

� k-coloring: Given a graph, can we color
the vertices using k colors so that each
edge connects two vertices of a different
color? This is in P for k = 2 only.

� vertex cover: Given a graph, can we
select k of the vertices so that every
vertex is at most one edge away from a
selected vertex?
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NP-complete problems

� Integer (linear) programs: Solving a linear program with
integer constraints on the variables.

Every NP problem can be represented as an integer program!
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Easy instances

� All problems in NP can be written as IPs.

� (including problems in P)

� So some IPs must be easy to solve...

maximize
z

a1z1 + · · ·+ anzn

subject to: z1 + · · ·+ zn = 1

zi ∈ {0, 1}

� Same as max{a1, . . . , an}, which can efficiently be solved!
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Bad news

Suppose you’d like to solve a SAT problem with n variables
by brute force (checking all 2n combinations), and you can
check 109 combinations per second.

n time to check all combinations

10 1 microsecond

30 1 second

50 13 days

70 374 centuries

100 2908 × (current age of the universe)
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Good news

Very large NP-complete problems are solved in practice!

� SAT problems with a million variables

� TSP with a million variables (1000 cities)

How is this possible?

� Instances occurring in practice have special structures that
can be exploited.

� Efficient approximation algorithms sometimes exist.
Example: get within ε of optimal in polynomial time.

� Computers and solvers are both getting faster...
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Moore good news: processors

Speedup since 1990:
about 15,000
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Moore good news: CPLEX

Credit: stegua.github.io 18-14

http://stegua.github.io/blog/2013/02/05/gomory-cuts-with-cplex/


Moore good news: Gurobi

(current version: 7.5.2)

Speedup since 1990 (CPLEX+Gurobi): about 850,000
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Summary

� Computers have improved steadily. Single-thread
computing has stalled, but now we have cloud computing,
GPUs, and more...

� Solvers have improved steadily at a much faster rate than
computers, and continue to do so. So today’s solver on
yesterday’s hardware would outperform yesterday’s solver
on todays hardware.

� Total speedup since 1990: about 12.7 billion times faster.
A typical MILP that would have taken 400 years to solve in
1990 can be solved in 1 second today.

� Mileage may vary!
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Leyffer–Linderoth–Luedtke complexity 1

1 Not meant to be taken (too) seriously

Sven Leyffer (Argonne National Lab)
Jeff Linderoth (UW–Madison)

Jim Luedtke (UW–Madison)

“How many decision variables (n) must a problem have before
everyone would be willing to pay $50 that a state-of-the-art solver
would no longer be able to solve it?”

convex and
continuous

LP 5× 107

QP 5× 105

SOCP 105

NLP 5× 104

convex with
mixed-integer

MILP 2× 104

MIQP 1000
MISOCP 1000
MINLP 500

nonconvex
mixed or cont.

QP 300
MIQP 300
NLP 100
MINNLP 100
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Rounding

Back to the standard IP formulation:

maximize
x

cTx

subject to: Ax ≤ b

x ∈ Z

Idea:

� Solve the problem for x ∈ R instead (a regular LP).

� Round each xi in the solution to the nearest integer.

� This usually does not work!
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Rounding

� If LP solution is already integral, then it is also the exact
solution to the original IP. (e.g. min cost flow problems)

� Rounding can lead to an infeasible point

� Rounding can produce a point far from the optimal point

true optimum ( ), relaxed optimum ( ), rounded ( )
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Convex relaxation

minimize
x∈S

f (x)

Two ideas we will discuss:

1. Function relaxation: if f is troublesome, bound it with a
function that is easier to work with, e.g. a convex function.

2. Constraint relaxation: If S is troublesome, find a bigger set
that is easier to work with, e.g. a convex set.
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Function relaxation

fopt = minimize
x∈S

f (x)

Suppose we can find g such that g(x) ≤ f (x) for all x .
In other words g is a lower bound on f .
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Function relaxation
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� Solve gopt = min
x∈S

g(x) and let x̂ be the corresponding x .

� We have the bounds: gopt = g(x̂) ≤ fopt ≤ f (x̂).

� If f (x̂) = gopt then the bound is tight and fopt = f (x̂).

Pick a convex g so that gopt and x̂ are easy to find!
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Constraint relaxation

fopt = minimize
x∈S

f (x)

Suppose we can find some set C such that S ⊆ C .
In other words, C is a superset of S .
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Constraint relaxation
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� Solve hopt = min
x∈C

f (x) and let x̃ be the optimal x .

� We have the bound: hopt = f (x̃) ≤ fopt ≤ f (x) for x ∈ S .

� If x̃ ∈ S then the bound is tight and fopt = f (x̃).

Pick a convex C so that hopt and x̃ are easy to find!
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Common relaxations

1. Boolean constraint:

x ∈ {0, 1} =⇒ 0 ≤ x ≤ 1

If xopt is 0 or 1, relaxation is exact.

2. Convex equality:

f (x) = 0 =⇒ f (x) ≤ 0

If f (xopt) = 0, relaxation is exact.

3. A constraint you don’t like:

x 6= 3 =⇒ just remove the constraint!

If xopt 6= 3, relaxation is exact.
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Convex hull

The convex hull of a set S , written conv(S) is the smallest
convex set that contains S .

Equivalent definitions:

� The set of all affine combinations of all points in S

� The intersection of all convex sets containing S
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